Lidocaine Induce Neurotoxicity and Peripheral Nerve Injury in Trigeminal Nerve System
Published: 2024-05-13
Page: 156-164
Issue: 2024 - Volume 7 [Issue 1]
Hue Vang *
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Viengsavanh Inthakoun
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Phimfalee Sayaxang
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Phetmany Sihavong
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Anhtana Photsavang
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Vimonlak Bouphavanh
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Khanphet Luangamat
Department of Dental Basic Sciences, Faculty of Dentistry, University of Health Sciences, Lao PDR.
Maiboun Simalavong
Division of Administration and Academic, Faculty of Dentistry, University of Health Sciences, Lao PDR.
*Author to whom correspondence should be addressed.
Abstract
Objectives: Local anesthetics (LAs) are widely used in dentistry for their ability to block nerve impulses, particularly lidocaine. However, LAs can commonly cause neurotoxicity In vitro and In vivo. Our study investigated the neurotoxic effects of lidocaine and the occurrence of peripheral nerve injury when lidocaine is injected for local or regional anesthesia in the oro-facial area.
Methods: Sprague-Dawley rats were used in trigeminal ganglion (TG) neuron preparation and incubated with lidocaine. Cell death was assessed using a visual microscope. Nerve injury was detected by activating transcription Factor 3 (ATF3) expression in TG neurons after lidocaine injection into the trigeminal nerve endings in the infraorbital area.
Results: The rat TG neurons were killed by lidocaine after 24 hours of incubation. Cell death depends on the concentration of lidocaine, resulting in 39.83% cell death at 10 mM lidocaine, 75.20% at 20 mM lidocaine, and 89.90% at 50 mM (p<0.03), compared to 1.56% in saline. The cell membrane was damaged, and the nuclei showed signs of fragmentation in DAPI staining. Nerve injury was indicated by ATF3 immunoreactivity (IR) in the nuclei of TG neurons in the maxillary area of the TG in naïve (n=10), saline (n=50), 1% lidocaine (n=95), 2% lidocaine (n=319) (p<0.02), and 5% lidocaine (n=433) groups (p<0.01).
Conclusion: Lidocaine may induce neurotoxicity and nerve injury in vitro and in vivo at clinical concentrations or in cases of overdose.
Keywords: Lidocaine, immunohistochemistry, neurotoxicity, trigeminal nerve system
How to Cite
Downloads
References
Haller I, Hausott B, Tomaselli B, Keller C, Klimaschewski L, Gerner P, Lirk P. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites. Anesthesiology. 2006, Nov;105(5):1024-33. PMID: 17065898. DOI:10.1097/00000542-200611000-00025.
Zheng X, Chen L, Du X, Cai J, Yu S, Wang H, Xu G, Luo Z. Effects of hyperbaric factors on lidocaine-induced apoptosis in spinal neurons and the role of p38 mitogen-activated protein kinase in rats with diabetic neuropathic pain. Exp Ther Med. 2017, Jun;13(6):2855-2861. PMID: 28587350; PMCID: PMC5450626. DOI:10.3892/etm.2017.4334. Epub 2017 Apr 13.
Grishko V, Xu M, Wilson G, Pearsall AW 4th. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010, Mar;92(3):609-18. PMID: 20194319. DOI:10.2106/JBJS.H.01847.
Breu A, Rosenmeier K, Kujat R, Angele P, Zink W. The cytotoxicity of bupivacaine, ropivacaine, and mepivacaine on human chondrocytes and cartilage. Anesth Analg. 2013, Aug;117(2):514-22. Epub 2013 Jun 7. PMID: 23749443. DOI:10.1213/ANE.0b013e31829481ed.
Gold MS, Reichling DB, Hampl KF, Drasner K, Levine JD. Lidocaine toxicity in primary afferent neurons from the rat. J Pharmacol Exp Ther. 1998, May;285(2): 413-21. PMID: 9580578.
Perez-Castro R, Patel S, Garavito-Aguilar ZV, Rosenberg A, Recio-Pinto E, Zhang J, Blanck TJ, Xu F. Cytotoxicity of local anesthetics in human neuronal cells. Anesth Analg. 2009, Mar;108(3):997-1007. PMID: 19224816. DOI:10.1213/ane.0b013e31819385e1.
Johnson ME. Potential neurotoxicity of spinal anesthesia with lidocaine. Mayo Clin Proc. 2000, Sep;75(9):921-32. PMID: 10994828. DOI:10.4065/75.9.921.
Leffler A, Fischer MJ, Rehner D, Kienel S, Kistner K, Sauer SK, Gavva NR, Reeh PW, Nau C. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008, Feb;118(2):763- 76. PMID: 18172555; PMCID: PMC2157564. DOI:10.1172/JCI32751.
Farber SJ, Saheb-Al-Zamani M, Zieske L, Laurido-Soto O, Bery A, Hunter D, Johnson P, Mackinnon SE. Peripheral nerve injury after local anesthetic injection. Anesth Analg. Sep;117(3):731-739. Epub 2013 Aug 6. Erratum in: Anesth Analg. 2014 Mar;118(3):686. Dosage error in article text. PMID: 23921658. DOI:10.1213/ANE.0b013e3182a00767.
Cheng KI, Wang HC, Wu YC, Tseng KY, Chuang YT, Chou CW, Chen PL, Chang LL, Lai CS. Sciatic nerve intrafascicular lidocaine injection-induced peripheral neuropathic pain: Alleviation by systemic minocycline administration. Clin J Pain. 2016, Jun;32(6):513-21. PMID: 26340654. DOI:10.1097/AJP.0000000000000293.
Kim HY, Chung G, Jo HJ, Kim YS, Bae YC, Jung SJ, Kim JS, Oh SB. Characterization of dental nociceptive neurons. J Dent Res. 2011, Jun;90(6):771-6. Epub 2011 Mar 1. PMID: 21364091.
DOI:10.1177/0022034511399906.
Vang H, Chung G, Kim HY, Park SB, Jung SJ, Kim JS, Oh SB. Neurochemical properties of dental primary afferent neurons. Exp Neurobiol. 2012, Jun;21(2):68-74. Epub 2012 Apr 23. PMID: 22792027; PMCID: PMC3381214. DOI:10.5607/en.2012.21.2.68.
Karnina R, Arif SK, Hatta M, Bukhari A. Molecular mechanisms of lidocaine. Ann Med Surg (Lond). 2021, Aug 17;69:102733. PMID: 34457261; PMCID: PMC8379473. DOI:10.1016/j.amsu.2021.102733.
Beecham GB, Nessel TA, Goyal A. Lidocaine. [Updated 2022 Dec 11]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available:https://www.ncbi.nlm.nih.gov/books/NBK539881/.
Gold MS, Reichling DB, Hampl KF, Drasner K, Levine JD. Lidocaine toxicity in primary afferent neurons from the rat. J Pharmacol Exp Ther. 1998, May;285(2): 413-21. PMID: 9580578.
Kamiya Y, Ohta K, Kaneko Y. Lidocaine-induced apoptosis and necrosis in U937 cells depending on its dosage. Biomed Res. 2005, Dec;26(6):231-9. PMID: 16415504. DOI:10.2220/biomedres.26.231.
Okamoto A, Tanaka M, Sumi C, Oku K, Kusunoki M, Nishi K, Matsuo Y, Takenaga K, Shingu K, Hirota K. The antioxidant N-acetyl cysteine suppresses lidocaine-induced intracellular reactive oxygen species production and cell death in neuronal SH-SY5Y cells. BMC Anesthesiol. 2016, Oct 24;16(1):104. PMID: 27776485; PMCID: PMC5078905. DOI:10.1186/s12871-016-0273-3.
Miller ZA, Mueller A, Kim T, Jolivert JF, Ma RZ, Muthuswami S, Park A, McMahon DB, Nead KT, Carey RM, Lee RJ. Lidocaine induces apoptosis in head and neck squamous cell carcinoma through activation of bitter taste receptor T2R14. Cell Rep. 2023, Dec 26;42(12):113437. Epub 2023 Nov 22. PMID: 37995679; PMCID: PMC10842818. DOI:10.1016/j.celrep.2023.113437.
Eberhardt M, Stueber T, de la Roche J, Herzog C, Leffler A, Reeh PW, Kistner K. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons. Plos One. 2017, Nov 15;12(11):e0188008.
DOI:10.1371/journal.pone.0188008. PMID: 29141003; PMCID: PMC5687772.
Mirshahidi S, Shields TG, de Necochea-Campion R, Yuan X, Janjua A, Williams NL, Mirshahidi HR, Reeves ME, Duerksen-Hughes P, Zuckerman LM. Bupivacaine and lidocaine induce apoptosis in osteosarcoma tumor cells. Clin Orthop Relat Res. 2021, Jan 1;479(1):180-194. PMID: 33009230; PMCID: PMC7899706. DOI:10.1097/CORR.0000000000001510.
Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P. Local anesthetic-induced neurotoxicity. International Journal of Molecular Sciences. 2016;17(3):339. Available:https://doi.org/10.3390/ijms17030339.
Cheng YC, Snavely A, Barrett LB, Zhang X, Herman C, Frost DJ, Riva P, Tochitsky I, Kawaguchi R, Singh B, Ivanis J, Huebner EA, Arvanites A, Oza V, Davidow L, Maeda R, Sakuma M, Grantham A, Wang Q, Chang AN, Pfaff K, Costigan M, Coppola G, Rubin LL, Schwer B, Alt FW, Woolf CJ. Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons. Cell Rep. 2021, Sep 7;36(10):109666. PMID: 34496254; PMCID: PMC8462619. DOI:10.1016/j.celrep.2021.109666.
Kim HY, Park CK, Cho IH, Jung SJ, Kim JS, Oh SB. Differential changes in TRPV1 expression after trigeminal sensory nerve injury. J Pain. 2008, Mar;9(3):280-8. Epub 2008 Jan 28. PMID: 18226965. DOI:10.1016/j.jpain.2007.11.013.
Flatters, Sarah. ATF3: Novel signpost for nerve injury. Neuroreport. 2000;11:10. DOI:1097/00001756-200010200-00003.
Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci. 2000, Feb;15(2):170-82. PMID: 10673325. DOI:10.1006/mcne.1999.0814.
Nascimento D, Pozza DH, Castro-Lopes JM, Neto FL. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals. 2011;19(4):210-21. Epub 2011 Sep 6. PMID: 21912089. DOI:10.1159/000330195.
Renton T, Adey-Viscuso D, Meechan JG, Yilmaz Z. Trigeminal nerve injuries in relation to the local anaesthesia in mandibular injections. Br Dent J. 2010, Nov;209(9):E15. PMID: 21072069 DOI: 10.1038/sj.bdj.2010.978..
Hillerup S, Jensen R. Nerve injury caused by mandibular block analgesia. Int J Oral Maxillofac Surg. 2006, May;35(5):437-43. Epub 2005 Dec 15. PMID: 16343853. DOI:10.1016/j.ijom.2005.10.004.
Malamed SF. Nerve injury caused by mandibular block analgesia. Int J Oral Maxillofac Surg. 2006, Sep;35(9):876-7; author reply 878. Epub 2006 Jul 7. PMID: 16829034. DOI:10.1016/j.ijom.2006.03.022.
Pan JZ, Wang Z, Sun W, et al. ATF3 is a neuron-specific biomarker for spinal cord injury and ischaemic stroke. Clin Transl Med. 2024;14:e1650. Available:https://doi.org/10.1002/ctm2.1650.
Averill S, Davis DR, Shortland PJ, Priestley JV, Hunt SP. Dynamic pattern of reg-2 expression in rat sensory neurons after peripheral nerve injury. J Neurosci. 2002, Sep 1;22(17):7493-501.
PMID: 12196572; PMCID: PMC6757959. DOI:10.1523/JNEUROSCI.22-17-07493.2002.
Matsuura Y, Ohtori S, Iwakura N, Suzuki T, Kuniyoshi K, Takahashi K. Expression of activating transcription factor 3 (ATF3) in uninjured dorsal root ganglion neurons in a lower trunk avulsion pain model in rats. Eur Spine J. 2013, Aug;22(8):1794-9. Epub 2013 Mar 8. PMID: 23471575; PMCID: PMC3731502. DOI:10.1007/s00586-013-2733-5.